skip to main content


Search for: All records

Creators/Authors contains: "Jha, Shalene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Urban gardens are vital green spaces, providing food for residents and space for engaged citizenry and community development. In California, climate change conditions (heat and drought) are becoming more extreme, threatening the resilience of urban gardens. Water use restrictions limit the timing and amount of water that gardeners can access, exacerbating these climate challenges for urban food production. Together with volunteer gardeners, we examined how ambient temperature, water use, vegetation, ground cover, and soil management affect rates of soil moisture gain and loss in urban gardens for a six-week period in the summer of 2017, during the hottest part of the growing season. We found that plot-level management of soils is essential for creating urban garden plots that maintain stable levels of water within garden soils. Although plots with better soil quality (i.e. water holding capacity) experienced slower rates of soil moisture gain after a watering event, they also experienced slower rates of soil moisture loss after the event, leading to soils with more stable, less fluctuating moisture profiles over time. This may benefit gardeners because under extreme climates (such as heat and drought) and water use restrictions, maintaining more stable soils for their plants means that the soils will retain water over a longer period after each watering event. Overall, such results highlight that better soil management that improves soil quality measures such as water holding capacity are potential solutions for maintaining soil moisture and reducing water use under changing climate conditions.

     
    more » « less
  2. Abstract

    Cities are sometimes characterized as homogenous with species assemblages composed of abundant, generalist species having similar ecological functions. Under this assumption, rare species, or species observed infrequently, would have especially high conservation value in cities for their potential to increase functional diversity. Management to increase the number of rare species in cities could be an important conservation strategy in a rapidly urbanizing world. However, most studies of species rarity define rarity in relatively pristine environments where human management and disturbance is minimized. We know little about what species are rare, how many species are rare, and what management practices promote rare species in urban environments. Here, we identified which plants and species of birds and bees that control pests and pollinate crops are rare in urban gardens and assessed how social, biophysical factors, and cross‐taxonomic comparisons influence rare species richness. We found overwhelming numbers of rare species, with more than 50% of plants observed classified as rare. Our results highlight the importance of women, older individuals, and gardeners who live closer to garden sites in increasing the number of rare plants within urban areas. Fewer rare plants were found in older gardens and gardens with more bare soil. There were more rare bird species in larger gardens and more rare bee species for which canopy cover was higher. We also found that in some cases, rarity begets rarity, with positive correlations found between the number of rare plants and bee species and between bee and bird species. Overall, our results suggest that urban gardens include a high number of species existing at low frequency and that social and biophysical factors promoting rare, planned biodiversity can cascade down to promote rare, associated biodiversity.

     
    more » « less
  3. Abstract

    Human activity continues to impact global ecosystems, often by altering the habitat suitability, persistence, and movement of native species. It is thus critical to examine the population genetic structure of key ecosystemservice providers across human‐altered landscapes to provide insight into the forces that limit wildlife persistence and movement across multiple spatial scales. While some studies have documented declines of bee pollinators as a result of human‐mediated habitat alteration, others suggest that some bee species may benefit from altered land use due to increased food or nesting resource availability; however, detailed population and dispersal studies have been lacking. We investigated the population genetic structure of the Eastern carpenter bee,Xylocopa virginica,across 14 sites spanning more than 450 km, including dense urban areas and intensive agricultural habitat.X. virginicais a large bee which constructs nests in natural and human‐associated wooden substrates, and is hypothesized to disperse broadly across urbanizing areas. Using 10 microsatellite loci, we detected significant genetic isolation by geographic distance and significant isolation by land use, where urban and cultivated landscapes were most conducive to gene flow. This is one of the first population genetic analyses to provide evidence of enhanced insect dispersal in human‐altered areas as compared to semi‐natural landscapes. We found moderate levels of regional‐scale population structure across the study system (GʹST = 0.146) and substantial co‐ancestry between the sampling regions, where co‐ancestry patterns align with major human transportation corridors, suggesting that human‐mediated movement may be influencing regional dispersal processes. Additionally, we found a signature of strong site‐level philopatry where our analyses revealed significant levels of high genetic relatedness at very fine scales (<1 km), surprising givenX. virginica'slarge body size. These results provide unique genetic evidence that insects can simultaneously exhibit substantial regional dispersal as well as high local nesting fidelity in landscapes dominated by human activity.

     
    more » « less
  4. Context Bees are the most important pollinators of crops worldwide. For most bees, patches of semi-natural habitat within or adjacent to crops can provide important nesting and food resources. Despite this, land cover change is rapidly reducing the abundance of semi-natural habitat within agroecological landscapes, with potentially negative consequences for bee communities and the services they provide. Objectives Identify how the availability of semi-natural habitat impacts bee communities across biogeographic regions, which may reveal commonalities and key governing principles that transcend a single region or taxa. Methods We analyze and compare the drivers of bee community composition in cotton fields within Brazil and the U.S. to reveal how land cover and land cover change impact bee community composition across these two regions. Results We show that the most critical factors impacting bee communities in cotton agroecosystems are the same in Brazil and the U.S.: bee abundance increases with cotton bloom density and the abundance of semi-natural habitat. Further, the loss of semi-natural habitat over a 5-year period negatively impacts bee abundance in both agroecosystems. Conclusions Given the importance of bee abundance for the provision of pollination service in cotton plants, our findings highlight the significance of small semi-natural habitat fragments in supporting key ecosystem service providers for both tropical and temperate cotton agroecological systems. We underscore the important role that local land managers play in biodiversity conservation, and the potential contribution they can make to pollination provision by supporting agricultural landscapes that conserve fragments of semi-natural habitat. 
    more » « less
  5. Abstract

    Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life‐history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species‐level life‐history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei'sGST,Hedrick'sGST, and Jost'sD. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick'sGSTand Jost'sD, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    DNA sequencing technologies continue to advance the biological sciences, expanding opportunities for genomic studies of non‐model organisms for basic and applied questions. Despite these opportunities, many next generation sequencing protocols have been developed assuming a substantial quantity of high molecular weight DNA (>100 ng), which can be difficult to obtain for many study systems. In particular, the ability to sequence field‐collected specimens that exhibit varying levels of DNA degradation remains largely unexplored. In this study we investigate the influence of five traditional insect capture and curation methods on Double‐Digest Restriction Enzyme Associated DNA (ddRAD) sequencing success for three wild bee species. We sequenced a total of 105 specimens (between 7–13 specimens per species and treatment). We additionally investigated how different DNA quality metrics (including pre‐sequence concentration and contamination) predicted downstream sequencing success, and also compared two DNA extraction methods. We report successful library preparation for all specimens, with all treatments and extraction methods producing enough highly reliable loci for population genetic analyses. Although results varied between species, we found that specimens collected by net sampling directly into 100% EtOH, or by passive trapping followed by 100% EtOH storage before pinning tended to produce higher quality ddRAD assemblies, likely as a result of rapid specimen desiccation. Surprisingly, we found that specimens preserved in propylene glycol during field sampling exhibited lower‐quality assemblies. We provide recommendations for each treatment, extraction method, and DNA quality assessment, and further encourage researchers to consider utilizing a wider variety of specimens for genomic analyses.

     
    more » « less